Encyclopedia of Planetary Landforms

£1,755.70

Available for Pre-order. Due April 2025.
Encyclopedia of Planetary Landforms Editors: Henrik Hargitai, Akos Kereszturi Format: Multiple-component retail product First Published: Published By: Springer International Publishing AG
string(4) "2460"
Pages: 2460 Illustrations and other contents: 20 Illustrations, color; 1980 Illustrations, black and white; 2460 p. 2000 illus., 20 illus. in color. Print + eReference. Language: English ISBN: 9783319265599 Categories: , ,

This revised and updated second edition provides a complete snapshot of our current knowledge on the geological features on solid-surface Solar System bodies. They extend over a wide range of scales, from micrometers to global scales, and include landform types (structural or topographic features), parts of landforms, terrain types and surface textures, surface patterns, and features identified at wavelengths extending from visible to radio waves, including albedo features, thermal infrared features, and radar features. The extensive new content addresses findings from the Messenger, Cassini, New Horizons, Curiosity and Maven missions and provides information on at least ten new landform types, as well as articles on exoplanet landforms. Refinements in methods and formations theories are also covered.  Today scientists have a huge set of images and other physical data which makes it possible to create models on the inner structure and thermal history of planetary bodies. Combined data sets lead to better supported models on the formation of surface features. These models give reliable explanations for the origin of planetary landforms. New, higher resolution images reveal new sets of meso- and microscale landforms, while images from previously not imaged dwarf planets, satellites, asteroids and cometary nuclei show landforms never seen before. In the future exoplanets are expected to continue to provide brand new types of relief features not predictable by our Earth-and Solar System bound imagination. There are so many different landforms on planetary surfaces that it is nearly impossible for anybody to overview all of them who does not work exactly with that certain feature type. The Encyclopedia helps with presenting the landforms in searchable, alphabetical order. The book contains more than a simple list of various features: it provides context and connections between them and point to their origin. For example sand dunes were found on Venus, Mars and Titan, fluvial valleys and shorelines are present on Mars and Titan, impact craters have many different types – all are presented and explained here. Beyond the texts, references, schematic figures, images and planetary maps accompany the description of landforms, providing a wide background for detailed analyses even for geomorphologists working in planetary science. This book helps the reader discover the great variety of planetary landforms. Its continual updating makes it the go-to reference in the field.

Weight0.5 kg
Author
Editor
Photographer
Format

Illustrators
Publisher

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

“The Encyclopedia of Planetary Landforms is the first encyclopedia of its kind specific to the area of planetary geology and provides entries on the geological features of planets and other solid bodies in our Solar System. … this is a very detailed resource that has information not easily found in one source. It is a great reference work for geologists and other planetary scientists who need an advanced and detailed resource with maps on planetary geology that analyzes individual landforms.” (Aleshia Huber, Reference Reviews, Vol. 30 (7), 2016)

Author Biography

Henrik Hargitai (Ph.D., 2007) is a planetary geomorphologist, media historian, and senior lecturer at the Eötvös Loránd University, Budapest, Hungary. He has Ph.D. in Earth Sciences and Philosophy (Aesthetics). He teaches planetary geomorphology (since 2002), planetary cartography, typography, and media history. His study fields include the distribution and morphology of the mountains of Io; lake ice and snow landforms; impact morphology;  and the history and localization of the planetary nomenclature. He participated in two Mars Desert Research Station simulations. He is the chair of the ICA Commission on Planetary Cartography and editor of the Central European edition of the series of “multilingual maps of terrestrial planets and their moons” and its 2014 special edition for children. He is the producer of numerous public outreach programs in planetary science for radio.    Ákos Kereszturi (Ph.D.) is a geologist, working on planetary science and astrobiology as researcher at the Research Center for Astronomy and Earth Sciences, where he leads the Astrophysical and Geochemical Laboratory. He is member of the NASA Astrobiology Institute TDE Focus Group, teaches planetary science at Eötvös Loránd University, serves on the editorial board of two international and one national journals, is vice president of the Hungarian Astronomical Association, and contributes in the popularization activity of the Polaris Observatory in Budapest. His main research area is the geology of Mars, Europa satellite, craters of Mercury, water in the Solar System and beyond, Mars analog field work, survival of extremophile organisms, analysis of asteroid surfaces, and geological history based on mineral characteristics of meteorites.